Value Iteration over Belief Subspace

نویسنده

  • Weihong Zhang
چکیده

Partially Observable Markov Decision Processes (POMDPs) provide an elegant framework for AI planning tasks with uncertainties. Value iteration is a well-known algorithm for solving POMDPs. It is notoriously difficult because at each step it needs to account for every belief state in a continuous space. In this paper, we show that value iteration can be conducted over a subset of belief space. Then, we study a class of POMDPs, namely informative POMDPs, where each observation provides good albeit incomplete information about world states. For informative POMDPs, value iteration can be conducted over a small subset of belief space. This yields two advantages: First, fewer vectors are in need to represent value functions. Second, value iteration can be accelerated. Empirical studies are presented to demonstrate these two advantages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Informative Partially Observable Markov Decision Processes

Solving Partially Observable Markov Decision Processes (POMDPs) generally is computationally intractable. In this paper, we study a special POMDP class, namely informative POMDPs, where each observation provides good albeit incomplete information about world states. We propose two ways to accelerate value iteration algorithm for such POMDPs. First, dynamic programming (DP) updates can be carrie...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs

Finding optimal policies for general partially observable Markov decision processes (POMDPs) is computationally difficult primarily due to the need to perform dynamic-programming (DP) updates over the entire belief space. In this paper, we first study a somewhat restrictive class of special POMDPs called almost-discernible POMDPs and propose an anytime algorithm called spaceprogressive value it...

متن کامل

The Evaluation of Sensors' Reliability and Their Tuning for Multisensor Data Fusion within the Transferable Belief Model

On Preference Representation on an Ordinal Scale p. 18 Rule-Based Decision Support in Multicriteria Choice and Ranking p. 29 Propositional Distances and Preference Representation p. 48 Value Iteration over Belief Subspace p. 60 Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs p. 72 Reasoning about Intentions in Uncertain Domains p. 84 Troubleshooting with Simultaneo...

متن کامل

Value Iteration Working With Belief Subsets

Value iteration is a popular algorithm for solving POMDPs. However, it is inefficient in practice. The primary reason is that it needs to conduct value updates for all the belief states in the (continuous) belief space. In this paper, we study value iteration working with a subset of the belief space, i.e., it conducts value updates only for belief states in the subset. We present a way to sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001